-16t^2+64(3)+80=0

Simple and best practice solution for -16t^2+64(3)+80=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+64(3)+80=0 equation:



-16t^2+64(3)+80=0
We add all the numbers together, and all the variables
-16t^2+723=0
a = -16; b = 0; c = +723;
Δ = b2-4ac
Δ = 02-4·(-16)·723
Δ = 46272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46272}=\sqrt{64*723}=\sqrt{64}*\sqrt{723}=8\sqrt{723}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{723}}{2*-16}=\frac{0-8\sqrt{723}}{-32} =-\frac{8\sqrt{723}}{-32} =-\frac{\sqrt{723}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{723}}{2*-16}=\frac{0+8\sqrt{723}}{-32} =\frac{8\sqrt{723}}{-32} =\frac{\sqrt{723}}{-4} $

See similar equations:

| 6(43+1.5)+7y-12=180 | | -3(5p+6)-2(1-14p)-3(3+4p)=0 | | 7m=3535=7m | | 2(x+3)=-6-2x | | -9-2s=s | | r-9/4=3/4 | | 4/5+1/3t=6 | | -2(x+3)=-62x | | -5-(15y-1)=2(y-16)=-y | | x2+27=0 | | 25,6=4u | | -10b=-b+9 | | 3/14-2/7=x-1/2 | | 120+0.70x=60+0.90x | | |8p+1|+3=12 | | 8(x-6)=-72 | | (20-2y)+2y=20 | | 2y/3+1/3=y/2+1/6 | | 7a–3=3–2a | | x-39=64 | | 2b-(-4)=(-18)-9b | | 7-2n=8n-(-2n) | | 17x-3=11x+51 | | 9x-6-12x+5=-7-4x | | -8q=-6q-10 | | r–12=14 | | 2.5q-4.3-3.7q=-0.2q-4.3 | | 7-2n=08n-(-4n) | | 4/3x=-16 | | 60+0.30x=20+0.50x | | x+14=54 | | x+x-3006=7844 |

Equations solver categories